

# **Demonstration of food processing equipment**

### **Problem Statement**

- Need for development of food preparation workspace for long-term human missions that incorporates containment and treatment of food preparation emissions.
- Hypogravity affects transport of fluids, vapors and particles. Characterization of particle transport from food preparation activities will support system maturation.
- Technology uses: space habitats for human missions, galleys in confined spaces (e.g. submarines).

## Technology Development Team

- Susana Carranza, Makel Engineering, Inc. scarranza@makelengineering.c om
- NASA JSC (SBIR Phase II)
- Makel Engineeirng (prime) and Cornell University (sub)

# **Proposed Flight Experiment**

### **Experiment Readiness:**

· Last quarter of 2013.

#### **Test Vehicles:**

· Parabolic aircraft.

#### **Test Environment:**

- · Payload has not flown before.
- Requested environment for tests: Moon and Mars gravity.

### **Test Apparatus Description:**

- Payload is a fume hood for food preparation.
  Tests will consist of evaluating the oil spatter due
  to sautéing two types (TBD) or shelf-stable foods
  under the physical constraints of the hood, with
  and without forced ventilation, at the gravity levels
  stated above.
- The user interfaces are sample dispensers, cooktop controls, fan controls, and data acquisition system (via laptop).



### **Technology Maturation**

- TRL 5 criteria test current prototype in reduced gravity
- TRL 6 criteria test high fidelity prototype (all components integrated) in reduced gravity
- Maturation steps: ground tests of integrated components (Fe-May 2013), parabolic flight tests (May-Sep 2013), parabolic flight test (Oct-Dec 2013). Beyond Phase II – high fidelity prototype
- No current deadlines to TRL 6 and higher

# Objective of Proposed Experiment

- Objective: collect spatter pattern data for sautéing under hypogravity and constraints of hood environment.
- Flight data: spatter patterns and environmental conditions for each experiment. Data will be used to validate/improve the design of the hood's emissions capture and treatment system (e.g., internal layout, fan flow rates, filtering, etc)